试题
题目:
已知:如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且OA=AB=AD.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且BE=8,tan∠BFA=
5
2
,求⊙O的半径长.
答案
解:(1)如图:
连接OB,
∵OA=AB=OB,
∴△OAB是等边三角形,
∴∠OAB=∠OBA=60°,
∵AD=AB,
∴∠ABD=∠D=
1
2
∠OAB=30°.
∴∠DBO=∠ABD+∠OBA=30°+60°=90°.
即OB⊥BD,
∴DB是⊙O的切线.
(2)∵AC是直径,点B在⊙O上,
∴∠ABC=90°,
∴△ABF为直角三角形,
在直角△ABF中,由tan∠BFA=
5
2
,设AB=
5
a,则BF=2a,AF=3a,
∴cos∠BFA=
BF
AF
=
2a
3a
=
2
3
.
∵∠C=∠E,∠AFC=∠BFE,
∴△AFC∽△BFE,
∴
BE
AC
=
BF
AF
=
2
3
,
∵BE=8,
∴AC=12.
因此圆的半径为6.
解:(1)如图:
连接OB,
∵OA=AB=OB,
∴△OAB是等边三角形,
∴∠OAB=∠OBA=60°,
∵AD=AB,
∴∠ABD=∠D=
1
2
∠OAB=30°.
∴∠DBO=∠ABD+∠OBA=30°+60°=90°.
即OB⊥BD,
∴DB是⊙O的切线.
(2)∵AC是直径,点B在⊙O上,
∴∠ABC=90°,
∴△ABF为直角三角形,
在直角△ABF中,由tan∠BFA=
5
2
,设AB=
5
a,则BF=2a,AF=3a,
∴cos∠BFA=
BF
AF
=
2a
3a
=
2
3
.
∵∠C=∠E,∠AFC=∠BFE,
∴△AFC∽△BFE,
∴
BE
AC
=
BF
AF
=
2
3
,
∵BE=8,
∴AC=12.
因此圆的半径为6.
考点梳理
考点
分析
点评
专题
切线的判定.
(1)连接OB,得到△OAB是等边三角形,∠OBA=∠OAB=60°,再由AD=AB得到∠ABD=30°,所以∠DBO=90°,证明BD是⊙O的切线.
(2)在直角△ABF中,求出cos∠BFA的值,然后由△ACF∽△BEF,得到
BE
AC
=
BF
AF
,求出直径AC,再确定圆的半径的长.
本题考查的是切线的判定,(1)根据题目的条件求出∠DBO的度数,证明DB是圆的切线.(2)利用三角函数求出
BF
AF
的值,然后利用相似三角形求出直径的长,再确定圆的半径的长.
计算题;证明题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )