切线的判定;坐标与图形性质.
如图所示,过O作OC⊥直线AB,垂足为C,作出直线y=-2x+
,令x=0求出y的值,确定出B的坐标,得到OB的长,令y=0求出x的值,确定出A的坐标,得到OA的长,在直角三角形AOB中,利用勾股定理求出AB的长,再利用面积法求出斜边上的高OC,得到OC的长等于圆的半径1,可得出直线与圆相切.
此题考查了切线的性质,一次函数与坐标轴的交点,勾股定理,以及三角形的面积求法,其中切线的证明方法有两种:有点连接证垂直;无点作垂线,证明垂线段长度等于半径,本题用的是第二种方法.
计算题.