试题
题目:
如图,以矩形ABCD的边CD为直径作⊙O,交矩形的对角线BD于点E,点F是BC边的中点,连接EF.
(1)试判断直线EF与⊙O的位置关系,并说明理由;
(2)若DC=2,EF=
3
,P是⊙O上除E、C两点外的任意一点,则∠EPC的度数为
120°
120°
.
答案
120°
解:(1)直线EF与⊙O相切.理由如下:
如图,连接OE、OF.
∵OD=OE,
∴∠1=∠D.
∵点F是BC的中点,点O是DC的中点,
∴OF∥BD,
∴∠3=∠D,∠2=∠1,
∴∠2=∠3.
∴在△EFO与△CFO中,
OE=OC
∠2=∠3
OF=OF
,
∴△EFO≌△CFO(SAS),
∴∠FEO=∠FCO=90°,
∴直线EF与⊙O相切.
(2)如图,连接DF.
∵由(1)知,△EFO≌△CFO,
∴FC=EF=
3
.
∴BC=2
3
在直角△FDC中,tan∠D=
BC
DC
=
3
,
∴∠D=60°.
∵点E、P、C、D四点共圆,
∴∠EPC+∠D=180°,
∴∠EPC=120°.
故填:120°.
考点梳理
考点
分析
点评
切线的判定;矩形的性质.
(1)直线EF与⊙O相切.理由如下:如图,连接OE、OF.通过△EFO≌△CFO(SAS),证得∠FEO=∠FCO=90°,则直线EF与⊙O相切.
(2)根据圆内接四边形的性质得到∠EPC+∠D=180°,利用(1)中的全等三角形的对应边相等求得FC=EF=
3
,所以通过解直角△BCD来求∠D的度数即可.
本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )