试题
题目:
如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E,DE=6,AC=16.
(1)求证:DE是⊙O的切线;
(2)求直径AB的长.
答案
(1)证明:如图,连接OD,BC;
∵AB为⊙O的直径,
∴BC⊥AC,
∵DE⊥AC,
∴BC∥DE;
∵D为弧BC的中点,
∴OD⊥BC,
∴OD⊥DE.
∴DE是⊙O的切线.
(2)解:设BC与DO交于点F,
由(1)可得四边形CFDE为矩形;
∴CF=DE=6,
∵OD⊥BC,
∴BC=2CF=12,
在Rt△ABC中,
AB=
B
C
2
+A
C
2
=
12
2
+
16
2
=20
.
(1)证明:如图,连接OD,BC;
∵AB为⊙O的直径,
∴BC⊥AC,
∵DE⊥AC,
∴BC∥DE;
∵D为弧BC的中点,
∴OD⊥BC,
∴OD⊥DE.
∴DE是⊙O的切线.
(2)解:设BC与DO交于点F,
由(1)可得四边形CFDE为矩形;
∴CF=DE=6,
∵OD⊥BC,
∴BC=2CF=12,
在Rt△ABC中,
AB=
B
C
2
+A
C
2
=
12
2
+
16
2
=20
.
考点梳理
考点
分析
点评
专题
切线的判定.
(1)连接OD,BC,要证明DE是⊙O的切线只要证明OD⊥DE即可,根据已知条件可以证明OD⊥BC;
(2)由(1)可得四边形CFDE为矩形,从而得到CF=DE=6,BC=2CF=12,利用勾股定理即可求得AB的长.
本题主要考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题.
计算题;证明题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )