答案

证明:(1)连接OQ;
∵OB=OC,PR=RQ;
∴∠OBP=∠OQP,∠RPQ=∠RQP;
∵∠OBP+∠BPO=90°,∠BPO=∠RPQ;
∴∠OQP+∠RQP=90°;
即∠OQR=90°,
∴RQ是⊙O的切线.
证明:(2)延长AO⊙O交于点C;
∵∠BPC=∠QPA,∠BCP=∠AQP,
∴△BCP∽△AQP,
∴PB·PQ=PC·PA=(OC+OP)(OA-OP)=(OB+OP)(OB-OP)=OB
2-OP
2,
∴OB
2=PB·PQ+OP
2.
解:(3)当RA=OA时,∠R=30°,易得∠B=15°,当R与A重合时,∠B=45°;
∵R是OA延长线上的点,
∴R与A不重合,
∴∠B≠45°;
又∵RA≤OA,
∴∠B<45°,
∴15°≤B<45°.

证明:(1)连接OQ;
∵OB=OC,PR=RQ;
∴∠OBP=∠OQP,∠RPQ=∠RQP;
∵∠OBP+∠BPO=90°,∠BPO=∠RPQ;
∴∠OQP+∠RQP=90°;
即∠OQR=90°,
∴RQ是⊙O的切线.
证明:(2)延长AO⊙O交于点C;
∵∠BPC=∠QPA,∠BCP=∠AQP,
∴△BCP∽△AQP,
∴PB·PQ=PC·PA=(OC+OP)(OA-OP)=(OB+OP)(OB-OP)=OB
2-OP
2,
∴OB
2=PB·PQ+OP
2.
解:(3)当RA=OA时,∠R=30°,易得∠B=15°,当R与A重合时,∠B=45°;
∵R是OA延长线上的点,
∴R与A不重合,
∴∠B≠45°;
又∵RA≤OA,
∴∠B<45°,
∴15°≤B<45°.