切线的判定;勾股定理.
(1)连接OC,AD,由弧AC=弧CD,得到OC⊥AD,∠ADC=∠DBC,而∠DCE=∠CBD,则∠DCE=∠ADC,从而得到CE∥AD,OC⊥CE
(2)先通过CE∥AD,得到∠E=90°,即四边形CEDF是矩形.先在Rt△CED中,设DE=x,则CE=2x,求出DE=2,CE=4;再在Rt△OAF中,利用勾股定理即可求出圆的半径.
本题考查了圆的切线的判定方法.经过半径的外端点与半径垂直的直线是圆的切线.当已知直线过圆上一点,要证明它是圆的切线,则要连接圆心和这个点,证明这个连线与已知直线垂直即可;当没告诉直线过圆上一点,要证明它是圆的切线,则要过圆心作直线的垂线,证明垂线段等于圆的半径.同时考查了垂径定理、勾股定理和矩形的性质.
计算题;证明题.