试题
题目:
如图所示,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.判断直线BD与⊙O的位置关系,并证明你的结论.
答案
答:直线BD与⊙O相切.
证明:连接OD,
∵OA=OD
∴∠A=∠ADO
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A,
∴∠ADO+∠CDB=90°,
∴∠ODB=90°.
∴直线BD与⊙O相切.
答:直线BD与⊙O相切.
证明:连接OD,
∵OA=OD
∴∠A=∠ADO
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A,
∴∠ADO+∠CDB=90°,
∴∠ODB=90°.
∴直线BD与⊙O相切.
考点梳理
考点
分析
点评
切线的判定.
首先连接OB,由在Rt△ABC中,∠C=90°,∠CBD=∠A=∠ADO,易得∠ADO+∠CDB=90°,继而证得直线BD与⊙O相切.
此题考查了切线的性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )