试题
题目:
如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.
(1)求证:MN是半圆的切线.
(2)求证:FD=FG.
答案
证明:(1)如图,∵AB是直径,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°.
又∵∠MAC=∠ABC,
∴∠MAC+∠CAB=90°,即∠MAB=90°,
∴MA⊥AB.
∴MN是半圆的切线.
(2)∵AB为直径,
∴∠ACB=90°,
而DE⊥AB,
∴∠DEB=90°,
∴∠1+∠5=90°,∠3+∠4=90°,
∵D是弧AC的中点,即弧CD=弧DA,
∴∠3=∠5,
∴∠1=∠4,
而∠2=∠4,
∴∠1=∠2,
∴FD=FG.
证明:(1)如图,∵AB是直径,
∴∠ACB=90°,
∴∠CAB+∠ABC=90°.
又∵∠MAC=∠ABC,
∴∠MAC+∠CAB=90°,即∠MAB=90°,
∴MA⊥AB.
∴MN是半圆的切线.
(2)∵AB为直径,
∴∠ACB=90°,
而DE⊥AB,
∴∠DEB=90°,
∴∠1+∠5=90°,∠3+∠4=90°,
∵D是弧AC的中点,即弧CD=弧DA,
∴∠3=∠5,
∴∠1=∠4,
而∠2=∠4,
∴∠1=∠2,
∴FD=FG.
考点梳理
考点
分析
点评
专题
切线的判定.
(1)欲证明MN是半圆的切线,只需证得∠MAB=90°,即MA⊥AB即可;
(2)根据圆周角定理推论得到∠ACB=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是
∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.
本题考查了切线的判定:经过半径的外端点,并且与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、三角形外角的性质以及等腰三角形的判定.
证明题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )