试题
题目:
如图,在△ABC中,AB=AC,O在AB上,以O为圆心,OB为半径的圆与AC相切于点F,交BC
于点D,交AB于点G,过D作DE⊥AC,垂足为E.
(1)DE与⊙O有什么位置关系,请写出你的结论并证明;
(2)若⊙O的半径长为3,AF=4,求CE的长.
答案
解:(1)DE与⊙O相切;
理由如下:
连接OD,
∵OB=OD,
∴∠ABC=∠ODB;
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC;
∵DE⊥AC,
∴OD⊥DE,
∴DE与⊙O相切.
(2)连接OD,OF;
∵DE,AF是⊙O的切线,
∴OF⊥AC,OD⊥DE,
又∵DE⊥AC,
∴四边形ODEF为矩形,
∴EF=OD=3;
在Rt△OFA中,AO
2
=OF
2
+AF
2
,
∴
AO=
3
2
+
4
2
=
25
=5
,
∴AC=AB=AO+BO=8,CE=AC-AF-EF=8-4-3=1,
∴CE=1.
解:(1)DE与⊙O相切;
理由如下:
连接OD,
∵OB=OD,
∴∠ABC=∠ODB;
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC;
∵DE⊥AC,
∴OD⊥DE,
∴DE与⊙O相切.
(2)连接OD,OF;
∵DE,AF是⊙O的切线,
∴OF⊥AC,OD⊥DE,
又∵DE⊥AC,
∴四边形ODEF为矩形,
∴EF=OD=3;
在Rt△OFA中,AO
2
=OF
2
+AF
2
,
∴
AO=
3
2
+
4
2
=
25
=5
,
∴AC=AB=AO+BO=8,CE=AC-AF-EF=8-4-3=1,
∴CE=1.
考点梳理
考点
分析
点评
专题
切线的判定.
由已知可证得OD⊥DE,OD为圆的半径,所以DE与⊙O相切;连接OD,OF,由已知可得四边形ODEF为矩形,从而得到EF的长,再利用勾股定理求得AO的长,从而可求得AC的长,此时CE就不难求得了.
本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
综合题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )