试题
题目:
如图,已知AB为⊙O的直径,BC为⊙O的弦,BD⊥CE,交直线CE于D点,如果∠1=∠2.求证:CE为⊙O的切线.
答案
证明:连接OC,(1分)
∵OB=OC,
∴∠OCB=∠1.(2分)
∵∠1=∠2,
∴∠OCB=∠2,
∴OC∥BD.(4分)
∵BD⊥CE,
∴OC⊥CE,(5分)
∴CE与⊙O相切.(6分)
证明:连接OC,(1分)
∵OB=OC,
∴∠OCB=∠1.(2分)
∵∠1=∠2,
∴∠OCB=∠2,
∴OC∥BD.(4分)
∵BD⊥CE,
∴OC⊥CE,(5分)
∴CE与⊙O相切.(6分)
考点梳理
考点
分析
点评
专题
切线的判定.
要证明CE为⊙O的切线,只要证明OC⊥CE即可.
本题考查的是切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
证明题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )