试题
题目:
(2005·上海模拟)已知:如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,∠AOD=∠APC.
求证:AP是⊙O的切线.
答案
证明:连接OP;
∵OP、OD是⊙O的半径,
∴OP=OD.
∴∠OPD=∠ODP.
∵PD⊥BE,
∴∠OCD=90°.
∴∠ODP+∠AOD=90°.
∵∠AOD=∠APC,
∴∠OPD+∠APC=90°.
∴∠APO=90°.
∴AP是⊙O的切线.
证明:连接OP;
∵OP、OD是⊙O的半径,
∴OP=OD.
∴∠OPD=∠ODP.
∵PD⊥BE,
∴∠OCD=90°.
∴∠ODP+∠AOD=90°.
∵∠AOD=∠APC,
∴∠OPD+∠APC=90°.
∴∠APO=90°.
∴AP是⊙O的切线.
考点梳理
考点
分析
点评
专题
切线的判定.
连接OP,只需证明OP⊥AP即可.
考查了切线的判定定理,能够充分运用已知的直角进行证明.
证明题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )