试题

题目:
青果学院(2007·潮南区模拟)如图,△ABC中,∠C=30°,AC=4,BC=4
3
,D为BC的中点,以AC为直径作⊙O.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AB于E,求证:DE与⊙O相切.
答案
青果学院解:(1)点D在⊙O上.
理由如下:
过O作OF⊥CD于F,连接OD.
在Rt△OCF 中,OC=
1
2
AC=2,∠C=30°,
∴OF=
1
2
OC=1,CF=
OC2-OF2
=
22-12
=
3,

∵CD=
1
2
BC=2
3
,∴DF=CD-CF=
3

在Rt△ODF中,OD=
OF2+DF2
=
12+(
3
)
2
=2

∴OD=OC,∴点D在⊙O上.

(2)证明:∵D为BC中点,O为AC中点,∴OD为△ABC的中位线,
∴OD∥AB,∵DE⊥AB,∴DE⊥OD,∴⊙O与DE相切.
青果学院解:(1)点D在⊙O上.
理由如下:
过O作OF⊥CD于F,连接OD.
在Rt△OCF 中,OC=
1
2
AC=2,∠C=30°,
∴OF=
1
2
OC=1,CF=
OC2-OF2
=
22-12
=
3,

∵CD=
1
2
BC=2
3
,∴DF=CD-CF=
3

在Rt△ODF中,OD=
OF2+DF2
=
12+(
3
)
2
=2

∴OD=OC,∴点D在⊙O上.

(2)证明:∵D为BC中点,O为AC中点,∴OD为△ABC的中位线,
∴OD∥AB,∵DE⊥AB,∴DE⊥OD,∴⊙O与DE相切.
考点梳理
切线的判定;勾股定理;三角形中位线定理;点与圆的位置关系.
(1)要求D与⊙O的位置关系,需先求OD的长,再与其半径相比较;若大于半径则在圆外,等于半径在圆上,小于半径则在圆内;
(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.
此题主要考查了点与圆的位置关系及切线的判定.解题时要注意连接过切点的半径是圆中的常见辅助线.
几何综合题.
找相似题