试题
题目:
如图,P是⊙O的弦CB延长线上一点,点A在⊙O上,且∠PCA=∠BAP.
求证:PA是⊙O的切线.
答案
证明:作⊙O的直径AD,连接BD.
则∠C=∠D(同弧所对的圆周角相等),∠ABD=90°(直径所对的圆周角是直角),
∴∠D+∠BAD=90°,
∴∠C+∠BAD=90°(等量代换);
又∵∠PCA=∠BAP,
∴∠BAD+∠PAB=90°,即AP⊥AD,
∴PA是⊙O的切线.
证明:作⊙O的直径AD,连接BD.
则∠C=∠D(同弧所对的圆周角相等),∠ABD=90°(直径所对的圆周角是直角),
∴∠D+∠BAD=90°,
∴∠C+∠BAD=90°(等量代换);
又∵∠PCA=∠BAP,
∴∠BAD+∠PAB=90°,即AP⊥AD,
∴PA是⊙O的切线.
考点梳理
考点
分析
点评
专题
切线的判定.
作⊙O的直径AD,连接BD.欲证PA是⊙O的切线,只需证明PA⊥AD.
本题综合考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
证明题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )