试题

题目:
青果学院如图,P是⊙O的弦CB延长线上一点,点A在⊙O上,且∠PCA=∠BAP.
求证:PA是⊙O的切线.
答案
青果学院证明:作⊙O的直径AD,连接BD.
则∠C=∠D(同弧所对的圆周角相等),∠ABD=90°(直径所对的圆周角是直角),
∴∠D+∠BAD=90°,
∴∠C+∠BAD=90°(等量代换);
又∵∠PCA=∠BAP,
∴∠BAD+∠PAB=90°,即AP⊥AD,
∴PA是⊙O的切线.
青果学院证明:作⊙O的直径AD,连接BD.
则∠C=∠D(同弧所对的圆周角相等),∠ABD=90°(直径所对的圆周角是直角),
∴∠D+∠BAD=90°,
∴∠C+∠BAD=90°(等量代换);
又∵∠PCA=∠BAP,
∴∠BAD+∠PAB=90°,即AP⊥AD,
∴PA是⊙O的切线.
考点梳理
切线的判定.
作⊙O的直径AD,连接BD.欲证PA是⊙O的切线,只需证明PA⊥AD.
本题综合考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
证明题.
找相似题