试题
题目:
(2011·徐汇区二模)如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线F
C与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若OB=BG,求证:四边形OCBD是菱形.
答案
证明:(1)连接OC,
∵OA=OC,∴∠1=∠2
由翻折得,∠1=∠3,∠F=∠AEC=90°.
∴∠2=∠3.
∴OC∥AF.∴∠OCG=∠F=90°.
∵点C在圆上
∴直线FC与⊙O相切.
(2)证法一:
在Rt△OCG中,∵OB=BG,∴
BC=
1
2
OG=OB
,
∵直径AB垂直弦CD,∴
CB
=
BD
∴CB=BD,∵OB=OC=OD
∴BC=OC=OD=BD
∴四边形OCBD是菱形.
证法二:在Rt△OCG中,
∵OB=BG
∴BC=
1
2
OG=OB,
∵OB=OC,
∴CB=CO
∵AB垂直于弦CD,
∴OE=EB
∵直径AB垂直弦CD,
∴CE=ED
∴四边形OCBD是平行四边形,
∵AB垂直于弦CD,
∴四边形OCBD是菱形.
证明:(1)连接OC,
∵OA=OC,∴∠1=∠2
由翻折得,∠1=∠3,∠F=∠AEC=90°.
∴∠2=∠3.
∴OC∥AF.∴∠OCG=∠F=90°.
∵点C在圆上
∴直线FC与⊙O相切.
(2)证法一:
在Rt△OCG中,∵OB=BG,∴
BC=
1
2
OG=OB
,
∵直径AB垂直弦CD,∴
CB
=
BD
∴CB=BD,∵OB=OC=OD
∴BC=OC=OD=BD
∴四边形OCBD是菱形.
证法二:在Rt△OCG中,
∵OB=BG
∴BC=
1
2
OG=OB,
∵OB=OC,
∴CB=CO
∵AB垂直于弦CD,
∴OE=EB
∵直径AB垂直弦CD,
∴CE=ED
∴四边形OCBD是平行四边形,
∵AB垂直于弦CD,
∴四边形OCBD是菱形.
考点梳理
考点
分析
点评
专题
切线的判定;菱形的判定;翻折变换(折叠问题).
(1)如图,连接OC,首先可以由OA=OC得到∠1=∠2,根据翻折可以得到∠2=∠3,由此即可证明直线FC与⊙O相切;
(2)由于OB=BG,由直径AB垂直弦CD可以得到CB=BD,而OB=OC=OD,由此可以得到OB=OC=OD=BD,然后即可证明题目的结论.
本题考查了切线的判定,垂径定理等知识点.其中要证某直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
证明题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )