试题

题目:
青果学院(2013·南开区一模)如图,已知:△ABC内接于⊙O,点D在OC的延长线上,∠B=∠D=30°.
(1)判断直线AD与⊙O的位置关系,并说明理由;
(2)若AC=6,求⊙O的半径和线段AD的长.
答案
(1)解:直线AD与⊙O的位置关系是相切,
理由是:青果学院
连接OA,
∵弧AC所对的圆心角是∠AOC,所对的圆周角是∠ABC,∠ABC=30°,
∴∠AOC=60°,
∵∠D=30°,
∴∠OAD=180°-30°-60°=90°,
∴OA⊥AD,
∵OA是⊙O半径,
∴AD是⊙O切线,
即直线AD与⊙O的位置关系是相切;

(2)解:∵由(1)知:∠AOC=60°,OA=OC,
∴△AOC是等边三角形,
∴OA=OC=AC=6,
在Rt△OAD中,tan60°=
AD
OA
=
AD
6

∴AD=6
3

答:⊙O半径是6,AD长是6
3

(1)解:直线AD与⊙O的位置关系是相切,
理由是:青果学院
连接OA,
∵弧AC所对的圆心角是∠AOC,所对的圆周角是∠ABC,∠ABC=30°,
∴∠AOC=60°,
∵∠D=30°,
∴∠OAD=180°-30°-60°=90°,
∴OA⊥AD,
∵OA是⊙O半径,
∴AD是⊙O切线,
即直线AD与⊙O的位置关系是相切;

(2)解:∵由(1)知:∠AOC=60°,OA=OC,
∴△AOC是等边三角形,
∴OA=OC=AC=6,
在Rt△OAD中,tan60°=
AD
OA
=
AD
6

∴AD=6
3

答:⊙O半径是6,AD长是6
3
考点梳理
切线的判定;等边三角形的判定与性质;勾股定理;圆周角定理.
(1)连接OA,根据圆周角定理求出∠O的度数,根据三角形的内角和定理求出∠OAD,根据切线的判定推出即可;
(2)得出等边三角形AOC,求出OA,根据锐角三角函数的定义得出tanO=
AD
OA
,代入求出即可.
本题考查的知识点是切线的性质和判定,锐角三角函数的定义,等边三角形的性质和判定,三角形的内角和定理,圆周角定理等,主要考查学生综合运用定理进行推理和计算的能力.
证明题.
找相似题