试题
题目:
(2013·雨花台区一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为点E.
(1)求证:直线DE与⊙O相切;
(2)当AB=9,BC=6时,求线段DE的长.
答案
(1)证明,连接AD,OD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=CD,
∵AO=BO,
∴OD∥AC,
∵DE⊥AC,
∴∠ODE=∠ADE=90°,
∴OD⊥DE,
∴直线DE与⊙O相切;
(2)∵AB=9,BC=6,
∴DB=3,
∴AD=
A
B
2
-B
D
2
=6
2
,
∵S
△ADC
=
1
2
AD·DC=9
2
,
∴DE=
36
2
AC
=2
2
.
(1)证明,连接AD,OD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=CD,
∵AO=BO,
∴OD∥AC,
∵DE⊥AC,
∴∠ODE=∠ADE=90°,
∴OD⊥DE,
∴直线DE与⊙O相切;
(2)∵AB=9,BC=6,
∴DB=3,
∴AD=
A
B
2
-B
D
2
=6
2
,
∵S
△ADC
=
1
2
AD·DC=9
2
,
∴DE=
36
2
AC
=2
2
.
考点梳理
考点
分析
点评
切线的判定;等腰三角形的性质;圆周角定理.
(1)连接AD,OD,证明OD⊥DE即可证明直线DE与⊙O相切;
(2)首先利用勾股定理求出AD的长,利用三角形的面积为定值即可求出DE的长.
本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,解答(2)时,还可以利用射影定理来求CE的长度.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )