试题
题目:
(2006·巴中)如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.
(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.
答案
(1)证明:连接OD,
∵D是BC的中点,O为AB的中点,
∴OD∥AC.
又∵DE⊥AC,
∴OD⊥DE,
∵OD为半径,
∴DE是圆O的切线.
(2)解:连接AD;
∵AB是圆O的直径,
∴∠ADB=90°=∠ADC,
∴△ADC是直角三角形.
∵∠C=30°,CD=10,
∴AD=
10
3
3
.
∵OD∥AC,OD=OB,
∴∠B=30°,
∴△OAD是等边三角形,
∴OD=AD=
10
3
3
,
∴圆O的半径为
10
3
3
cm.
(1)证明:连接OD,
∵D是BC的中点,O为AB的中点,
∴OD∥AC.
又∵DE⊥AC,
∴OD⊥DE,
∵OD为半径,
∴DE是圆O的切线.
(2)解:连接AD;
∵AB是圆O的直径,
∴∠ADB=90°=∠ADC,
∴△ADC是直角三角形.
∵∠C=30°,CD=10,
∴AD=
10
3
3
.
∵OD∥AC,OD=OB,
∴∠B=30°,
∴△OAD是等边三角形,
∴OD=AD=
10
3
3
,
∴圆O的半径为
10
3
3
cm.
考点梳理
考点
分析
点评
专题
切线的判定;等边三角形的性质;圆周角定理.
(1)连接OD,利用三角形的中位线定理可得出OD∥AC,再利用平行线的性质就可证明DE是圆O的切线.
(2)利用30°特殊角度,可求出AD的长,由两直线平行同位角相等,可得出∠ODB=∠C=30°,从而△ABD为直角三角形,圆O的半径可求.
本题考查了切线的判定及平行线的性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
几何综合题;压轴题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )