试题

题目:
青果学院(2007·北京)已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=
1
2
OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.
答案
(1)证明:如图,连接OA;
∵OC=BC,AC=
1
2
OB,青果学院
∴OC=BC=AC=OA.
∴△ACO是等边三角形.
∴∠O=∠OCA=60°,
∵AC=BC,
∴∠CAB=∠B,
又∠OCA为△ACB的外角,
∴∠OCA=∠CAB+∠B=2∠B,
∴∠B=30°,又∠OAC=60°,
∴∠OAB=90°,
∴AB是⊙O的切线;

(2)解:作AE⊥CD于点E,
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=
2

∵∠D=30°,
∴AD=2
2

∴DE=
3
AE=
6

∴CD=DE+CE=
6
+
2

(1)证明:如图,连接OA;
∵OC=BC,AC=
1
2
OB,青果学院
∴OC=BC=AC=OA.
∴△ACO是等边三角形.
∴∠O=∠OCA=60°,
∵AC=BC,
∴∠CAB=∠B,
又∠OCA为△ACB的外角,
∴∠OCA=∠CAB+∠B=2∠B,
∴∠B=30°,又∠OAC=60°,
∴∠OAB=90°,
∴AB是⊙O的切线;

(2)解:作AE⊥CD于点E,
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=
2

∵∠D=30°,
∴AD=2
2

∴DE=
3
AE=
6

∴CD=DE+CE=
6
+
2
考点梳理
切线的判定;勾股定理.
(1)求证:AB是⊙O的切线,可以转化为证∠OAB=90°的问题来解决.本题应先说明△ACO是等边三角形,则∠O=60°;又AC=
1
2
OB,进而可以得到OA=AC=
1
2
OB,则可知∠B=30°,即可求出∠OAB=90°.
(2)作AE⊥CD于点E,CD=DE+CE,因而就可以转化为求DE,CE的问题,根据勾股定理就可以得到.
本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
几何综合题;压轴题.
找相似题