试题
题目:
(2010·大连)如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.
答案
(1)解:DC是⊙O的切线.理由如下:
∵∠A=∠D=30°,
∴AC=CD,∠ACD=120°.
∵OA=OC,
∴∠OCA=∠A=30°,
∴∠OCD=90°,
∴DC是⊙O的切线.
(2)证明:连接BC,
∵AB是直径,
∴∠ACB=90°,
∴∠BCD=120°-90°=30°=∠D,
∴BC=BD.
∵∠CBO=2∠D=60°,OB=OC,
∴△OBC是等边三角形,则BC=OC,
∴△AOC≌△DBC.(SSS)
(1)解:DC是⊙O的切线.理由如下:
∵∠A=∠D=30°,
∴AC=CD,∠ACD=120°.
∵OA=OC,
∴∠OCA=∠A=30°,
∴∠OCD=90°,
∴DC是⊙O的切线.
(2)证明:连接BC,
∵AB是直径,
∴∠ACB=90°,
∴∠BCD=120°-90°=30°=∠D,
∴BC=BD.
∵∠CBO=2∠D=60°,OB=OC,
∴△OBC是等边三角形,则BC=OC,
∴△AOC≌△DBC.(SSS)
考点梳理
考点
分析
点评
专题
切线的判定;全等三角形的判定.
(1)因为C点在圆上,所以只需证明OC⊥CD即可.可先求出∠ACD=120°,∠ACO=∠A=30°,所以∠OCD=90°.得证;
(2)证明△OBC为等边三角形,运用“SSS”判定全等.
此题考查了切线的判定、全等三角形的判定及等腰三角形的判定等知识点,难度中等.
几何综合题.
找相似题
(2004·三明)矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有( )
(2000·黑龙江)下列命题正确的是( )
(2012·上城区二模)如图,在直角坐标系中,⊙O的半径为1,则直线y=-2x+
5
与⊙O的位置关系是( )
(2004·上海模拟)下列命题中正确的是( )
如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论:
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线,正确的个数是( )