试题
题目:
△ABC中,∠C=90°,∠B=60°,AC=3,以C为圆心,r为半径作⊙C,如果点B在圆内,而点A在圆外,那么r的取值范围是
3
<r<3
3
<r<3
.
答案
3
<r<3
解:因为△ABC中,∠C=90°,∠B=60°,所以∠A=30°,得到AC=
3
BC,又AC=3,得BC=
3
.
∵点B在圆内,∴r>BC=
3
.
∵点A在圆外,∴r<AC=3.
因此:
3
<r<3.
故答案是:
3
<r<3.
考点梳理
考点
分析
点评
专题
点与圆的位置关系;圆的认识.
根据直角三角形的角的度数和AC的长可以求出BC的长,然后由点B在圆内,点A在圆外,确定r的取值范围.
本题考查的是点和圆的位置关系,先求出三角形的BC边的长,再根据点B和点A与⊙C的位置关系确定半径的取值范围.
推理填空题.
找相似题
(2010·宜宾)若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系是( )
(2003·甘肃)已知⊙O的半径为r,点P到点O的距离大于r,那么点P的位置( )
(2013·晋江市质检)如图,动点M、N分别在直线AB与CD上,且AB∥CD,∠BMN与∠MND的角平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是( )
(2012·西湖区一模)在Rt△ABC中,∠A=90°,AB=3,AC=4.若以点C为圆心,画一个半径为4的圆,则点B与OC的位置关系为( )
(2011·长宁区一模)已知点P是⊙O所在平面内的一点,P与圆上所有点的距离中,最长距离是9cm,最短距离是4cm,则⊙O的直径是( )