试题

题目:
在△ABC中,∠ACB=90°.AC=2cm,BC=4cm,CM是斜边中线,以C为圆心以
5
cm长为半径画圆,则A、B、M三点在圆的外是
点B
点B
,在圆上的是
点M
点M

答案
点B

点M

解:∵∠ACB=90°,AC=2cm,BC=4cm,
∴AB=
22+42
=2
5

∵CM是中线,
∴CM=
1
2
AB=
5

∵2<
5
<4
∴在圆外的是点B,在圆上的是点M.
故答案为:点B,点M.
考点梳理
点与圆的位置关系.
先求出AB的长,根据直角三角形斜边上的中线等于斜边的一半,求得CM的长;再由点与圆的位置关系,确定出点三点与⊙C的位置关系.
本题考查了点与圆的位置关系:①点P在⊙O上;②点P在⊙O内;③点P在⊙O外,及勾股定理的运用.
找相似题