试题

题目:
青果学院如图所示,△ABC中,∠C=90°,∠B=60°,BD是△ABC的角平分线,BC=
3
,以A为圆心,2为半径画⊙A,点D在(  )



答案
B
解:∵∠C=90°,∠B=60°,BD是△ABC的角平分线,
∴∠DBC=30°,∠A=30°,
∵BC=
3

∴AB=2
3

∴AC=3,tan30°=
DC
BC
=
DC
3
=
3
3

则CD=1,
∴AD=2,
∵以A为圆心,2为半径画⊙A,
∴点D在⊙A上,
故选:B.
考点梳理
点与圆的位置关系.
首先利用角平分线的性质得出∠DBC=30°,进而得出CD,AC的长,即可求出AD=2得出点D在⊙A上.
此题主要考查了点与圆的位置关系,根据已知得出DC与AC的长是解题关键.
找相似题