试题
题目:
在直角三角形ABC中,∠C=90°,AC=3,AB=5.若以点C为圆心,画一个半径为3的圆,则点A,点B和⊙C的相互位置关系为( )
A.点A,点B均在⊙C内
B.点A,点B均在⊙C外
C.点A,点B均在⊙C上
D.点A在⊙C上,点B在⊙C外
答案
D
解:∵r=3,AC=3,AB=5,
∴可得点A在⊙C上,点B在⊙C外,
故选D.
考点梳理
考点
分析
点评
点与圆的位置关系.
由r和CA,CB的大小关系即可判断点A和点B与⊙C的位置关系.
本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
找相似题
(2010·宜宾)若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系是( )
(2003·甘肃)已知⊙O的半径为r,点P到点O的距离大于r,那么点P的位置( )
(2013·晋江市质检)如图,动点M、N分别在直线AB与CD上,且AB∥CD,∠BMN与∠MND的角平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是( )
(2012·西湖区一模)在Rt△ABC中,∠A=90°,AB=3,AC=4.若以点C为圆心,画一个半径为4的圆,则点B与OC的位置关系为( )
(2011·长宁区一模)已知点P是⊙O所在平面内的一点,P与圆上所有点的距离中,最长距离是9cm,最短距离是4cm,则⊙O的直径是( )