试题
题目:
用反证法证明“直线a、b、c在同一平面内,且a⊥c,b⊥c,则a∥b”时,应假设( )
A.a与b不平行
B.a不垂直c
C.b都不垂直c
D.a垂直于b
答案
A
解:a与b的位置关系有a∥b和a与b不平行两种,因此用反证法证明“a∥b”时,应先假设a与b不平行.
故选A.
考点梳理
考点
分析
点评
反证法.
反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.
本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
找相似题
(2010·通化)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )
(2013·北仑区二模)用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设( )
对于命题“如果a>b>0,那么a
2
>b
2
.”用反证法证明,应假设( )
对于命题“如果|a|=|b|,那么a=b”,能说明它是假命题的反例是( )
对于命题“如果∠1+∠2=180°,那么∠1≠∠2”能说明它是假命题的例子(反例)是( )