试题
题目:
已知等边三角形的边长为6cm,则其外接圆的半径是
2
3
2
3
.
答案
2
3
解:连接中心和顶点,作出边心距.
那么得到直角三角形在中心的度数为:360÷3÷2=60°,
那么外接圆半径是:6÷2÷sin60°=2
3
;
故答案:2
3
.
考点梳理
考点
分析
点评
三角形的外接圆与外心;等边三角形的性质.
经过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C.连接OA,则在直角△OAC中,∠O=
180°
n
.OC是边心距r,OA即半径R.AB=2AC=a.根据三角函数即可求解.
此题主要考查了三角形的外心以及等边三角形的性质,做正多边形和圆的问题时,应连接圆心和正多边形的顶点,作出边心距,得到和中心角一半有关的直角三角形进行求解.
找相似题
(2013·安徽)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是( )
(2010·台湾)如图所示,甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、
65°.若
AB
=
DE
=
GH
,则甲、乙、丙周长的关系为( )
(2010·本溪)如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4
2
,则⊙O的直径等于( )
(2009·威海)已知⊙O是△ABC的外接圆,若AB=AC=5,BC=6,则⊙O的半径为( )
(2008·南京)如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为( )