试题
题目:
(2008·南京)如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为( )
A.
3
B.
5
C.
2
3
D.
2
5
答案
C
解:连接OA,并作OD⊥AB于D,则
∠OAD=30°,OA=2,
∴AD=OA·cos30°=
3
,
∴AB=2
3
.
故选C.
考点梳理
考点
分析
点评
三角形的外接圆与外心;等边三角形的性质.
连接OA,并作OD⊥AB于D;由于等边三角形五心合一,则OA平分∠BAC,由此可求出∠BAO的度数;在Rt△OAD中,根据⊙O的半径和∠BAO的度数即可求出AD的长,进而可得出△ABC的边长.
此题主要考查等边三角形外接圆半径的求法.
找相似题
(2013·安徽)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是( )
(2010·台湾)如图所示,甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、
65°.若
AB
=
DE
=
GH
,则甲、乙、丙周长的关系为( )
(2010·本溪)如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4
2
,则⊙O的直径等于( )
(2009·威海)已知⊙O是△ABC的外接圆,若AB=AC=5,BC=6,则⊙O的半径为( )
(2005·陕西)如图,⊙O是△ABC的外接圆,连接OA、OC,⊙O的半径R=2,sinB=
3
4
,则弦AC的长为( )