试题

题目:
青果学院如图,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.
答案
青果学院证明:作DO∥AB交AC于O.
则由AB=AC易知OD=OC,且∠DOC=∠BAC=2∠CED,
所以O为△EDC的外心,
取F为△EDC的外接圆与AC的交点,连接DF,则OF=OC=OD,∠ACE=∠ADF.
所以△ACE∽△ADF,即有
AD
AC
=
AF
AE

再由DO∥AB,∠ADO=∠BAE,
∠AOD=180-∠DOC=180°-∠A=180°-∠BED=∠AEB,
所以△ADO∽△ABE,
即得
OD
AE
=
AD
AB
=
AD
AC
=
AF
AE

故AF=OD=OC=
1
2
CF,从而AO=2OC.
由DO∥AB,得:BD=2CD.
青果学院证明:作DO∥AB交AC于O.
则由AB=AC易知OD=OC,且∠DOC=∠BAC=2∠CED,
所以O为△EDC的外心,
取F为△EDC的外接圆与AC的交点,连接DF,则OF=OC=OD,∠ACE=∠ADF.
所以△ACE∽△ADF,即有
AD
AC
=
AF
AE

再由DO∥AB,∠ADO=∠BAE,
∠AOD=180-∠DOC=180°-∠A=180°-∠BED=∠AEB,
所以△ADO∽△ABE,
即得
OD
AE
=
AD
AB
=
AD
AC
=
AF
AE

故AF=OD=OC=
1
2
CF,从而AO=2OC.
由DO∥AB,得:BD=2CD.
考点梳理
三角形的外接圆与外心;全等三角形的判定与性质.
首先作DO∥AB交AC于O,得出O为△EDC的外心,进而得出△ACE∽△ADF,即有
AD
AC
=
AF
AE
,即可得出△ADO∽△ABE,
即可得出BD=2CD.
此题主要考查了等腰三角形有关知识,以及同圆中同角所对的弦之间的关系.
证明题.
找相似题