试题
题目:
如图,M是线段AD、CD的垂直平分线交点,AB⊥BC,∠D=65°,则∠MAB+∠MCB的大小是( )
A.120°
B.130°
C.140°
D.160°
答案
C
解:
过M作射线DN,
∵M是线段AD、CD的垂直平分线交点,
∴AM=DM,CM=DM,
∴∠DAM=∠ADM,∠DCM=∠CDM,
∴∠MAD+∠MCD=∠ADM+∠CDM=∠ADC,
∵∠ADC=65°,
∴∠MAD+∠MCD=∠ADC=65°,
∴∠AMC=∠AMN+∠CMN=∠DAM+∠ADM+∠DCM+∠CDM=65°+∠ADC=65°+65°=130°
∵AB⊥BC,
∴∠B=90°,
∴∠MAB+∠MCB=360°-∠B-∠AMC=360°-90°-130°=140°,
故选C.
考点梳理
考点
分析
点评
三角形的外接圆与外心;多边形内角与外角;圆周角定理.
过M作射线DN,根据线段垂直平分线的性质得出AM=DM,CM=DM,推出∠DAM=∠ADM,∠DCM=∠CDM,求出∠MAD+∠MCD=∠ADM+∠CDM=∠ADC=65°,根据三角形外角性质求出∠AMC,根据四边形的内角和定理求出即可.
本题考查了线段垂直平分线性质,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,
找相似题
(2013·安徽)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是( )
(2010·台湾)如图所示,甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、
65°.若
AB
=
DE
=
GH
,则甲、乙、丙周长的关系为( )
(2010·本溪)如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,AB=4
2
,则⊙O的直径等于( )
(2009·威海)已知⊙O是△ABC的外接圆,若AB=AC=5,BC=6,则⊙O的半径为( )
(2008·南京)如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为( )