试题

题目:
青果学院如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm.若水面上升2cm(EG=2cm),则此时水面宽AB为多少?
答案
青果学院解:如图所示,连接OA、OC.
设⊙O的半径是R,则OG=R-2,OE=R-4.
∵OF⊥CD,
∴CG=
1
2
CD=10cm.
在直角三角形COG中,根据勾股定理,得
R2=102+(R-2)2
解,得R=26.
在直角三角形AOE中,根据勾股定理,得
AE=
262222
=8
3
cm.
根据垂径定理,得AB=16
3
(cm).
青果学院解:如图所示,连接OA、OC.
设⊙O的半径是R,则OG=R-2,OE=R-4.
∵OF⊥CD,
∴CG=
1
2
CD=10cm.
在直角三角形COG中,根据勾股定理,得
R2=102+(R-2)2
解,得R=26.
在直角三角形AOE中,根据勾股定理,得
AE=
262222
=8
3
cm.
根据垂径定理,得AB=16
3
(cm).
考点梳理
垂径定理的应用.
连接OA、OC.设⊙O的半径是R,则OG=R-2,OE=R-4.根据垂径定理,得CG=10.在直角三角形OCG中,根据勾股定理求得R的值,再进一步在直角三角形OAE中,根据勾股定理求得AE的长,从而再根据垂径定理即可求得AB的长.
此题综合运用了勾股定理和垂径定理.
找相似题