试题
题目:
(2011·南宁)一条公路弯道处是一段圆弧
AB
,点O是这条弧所在圆的圆心,点C是
AB
的中点,OC与AB相交于点D.已知AB=120m,CD=20m,那么这段弯道的半径为( )
A.200m
B.200
3
m
C.100m
D.100
3
m
答案
C
解:连接OA,
∵C是
AB
的中点,OC与AB相交于点D,
∴AB⊥OC,
∴AD=
1
2
AB=
1
2
×120
=60m,
∴△AOD是直角三角形,
设OA=r,则OD=r-CD=OC-CD=r-20,
在Rt△AOD中,
OA
2
=AD
2
+OD
2
,即r
2
=60
2
+(r-20)
2
,解得r=100m.
故选C.
考点梳理
考点
分析
点评
专题
垂径定理的应用;勾股定理.
连接OA,由垂径定理求出AD的长,判断出△AOD的形状,在设OA=r,利用勾股定理即可得出r的长.
本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
探究型.
找相似题
(2007·资阳)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为
( )
(2012·湛江模拟)一条排水管的截面如图所示,已知排水管的截面圆半径OB=5,截面圆圆心O到水面的距离OC是3,则水面宽AB是( )
(2012·无锡一模)如图,用一块直径为1m的圆桌布平铺在对角线长为1m的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为( )
(2010·罗湖区模拟)在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是( )
一条排水管的截面如图所示,已知排水管的截面半径OB=5,截面圆圆心为O,当水面宽AB=8时,水位高是多少( )