试题
题目:
实数a、b在数轴上的位置如图所示,那么化简|b-a|-
a
2
的结果是( )
A.2a-b
B.b
C.-b
D.-2a+b
答案
C
解:根据数轴可以得到b<0<a,则b-a<0,
则|b-a|-
a
2
=(a-b)-a=-b.
故选C.
考点梳理
考点
分析
点评
二次根式的性质与化简;实数与数轴.
根据数轴可以得到b<0<a,则b-a<0,根据绝对值的性质以及算术平方根的性质即可化简.
本题考查了二次根式的化简,解答此题,要弄清以下问题:
①定义:一般地,形如
a
(a≥0)的代数式叫做二次根式.当a>0时,
a
表示a的算术平方根;当a=0时,
0
=0;当a<0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).
②性质:
a
2
=|a|.
找相似题
(2013·曲靖)下列等式成立的是( )
(2013·红河州)计算
(-3)
2
的结果是( )
(2013·德阳)下列计算正确的是( )
(2013·赤峰)下列等式成立的是( )
(2012·南宁)下列计算正确的是( )