试题

题目:
观察下列等式:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
+
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12


请你根据以上规律,写出第n个等式
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1+
1
n(n+1)
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1+
1
n(n+1)

答案
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1+
1
n(n+1)

解:∵观察下列等式:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
+
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12


∴第n个等式是
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1+
1
n(n+1)

故答案为:
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1+
1
n(n+1)
考点梳理
二次根式的性质与化简.
根据已知算式得出规律,根据规律求出即可.
本题考查了二次根式的性质的应用,关键是能根据题意得出规律.
规律型.
找相似题