试题

题目:
观察下列等式:
1+
1
12
+
1
22
=1+1-
1
2
1+
1
22
+
1
32
=1+
1
2
-
1
3
1+
1
32
+
1
42
=1+
1
3
-
1
4
,…
(1)猜想并写出第n个等式;
(2)证明你写出的等式的正确性.
答案
解:(1)猜想:
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1


(2)证明:∵1+
1
n2
+
1
(n+1)2
=1+[
1
n
-
1
(n+1)
]2+2×
1
n(n+1)

=1+[
1
n
-
1
(n+1)
]2+2[
1
n
-
1
(n+1)
]=[1+
1
n
-
1
(n+1)
]2

1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1

解:(1)猜想:
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1


(2)证明:∵1+
1
n2
+
1
(n+1)2
=1+[
1
n
-
1
(n+1)
]2+2×
1
n(n+1)

=1+[
1
n
-
1
(n+1)
]2+2[
1
n
-
1
(n+1)
]=[1+
1
n
-
1
(n+1)
]2

1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
考点梳理
二次根式的性质与化简.
(1)观察各式,即可得到规律:
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1

(2)利用分式的加减运算法则求解,可得1+
1
n2
+
1
(n+1)2
=[1+
1
n
-
1
(n+1)
]
2
,继而可证得结论.
此题考查了二次根式的性质与化简.此题难度适中,属于规律性题目,注意能根据题意得到规律:
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
是解此题的关键.
规律型.
找相似题