试题

题目:
观察下列各式:
12+2+(
1
1
)
2
=1+
1
1

22+2+(
1
2
)
2
=2+
1
2
1
2

32+2+(
1
3
)
2
=3+
1
3
1
3

④第四个等式为
42+2+(
1
4
)
2
=4+
1
4
42+2+(
1
4
)
2
=4+
1
4

⑤第n个等式为
n2+2+(
1
n
)
2
=n+
1
n
n2+2+(
1
n
)
2
=n+
1
n

答案
1

1
2

1
3

42+2+(
1
4
)
2
=4+
1
4

n2+2+(
1
n
)
2
=n+
1
n

解:∵①
12+2+(
1
1
)2
=
(1+
1
1
)2
=1+1;
22+2+(
1
2
)
2
=
(2+
1
2
)
2
=2+
1
2

32+2+(
1
3
)
2
=
(3+
1
3
)
2
=3+
1
3

∴第四个等式为
42+2+(
1
4
)
2
=4+
1
4


第n个等式为
n2+2+(
1
n
)
2
=n+
1
n

故答案为:1,
1
2
1
3
42+2+(
1
4
)
2
=4+
1
4
n2+2+(
1
n
)
2
=n+
1
n
考点梳理
二次根式的性质与化简.
①、②、③把被开方数化为完全平方式,再把各根式进行化简,找出规律即可得出结论.
本题考查的是二次根式的性质与化简,根据题意找出规律是解答此题的关键.
找相似题