试题
题目:
已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC,求证:DG=EG.
答案
证明:作FQ⊥BD于Q,如图,
∴∠FQB=90°,
∵DE⊥AC,
∴∠DEC=90°
∵FG⊥CD CD⊥BD,
∴BD∥FG,∠BDC=∠FGC=90°,
∴四边形DGFQ为矩形,
∴QF=DG,
∴∠B=∠GFC
∵F为BC中点
∴BF=FC,
∵在Rt△BQF与Rt△FGC中,
∠BQF=∠FGC
∠B=∠GFC
BF=FC
∴△BQF≌△FGC(AAS),
∴QF=GC,
∵QF=DG,
∴DG=GC,
在Rt△DEC中,
∵G为DC中点,
∴DG=EG.
证明:作FQ⊥BD于Q,如图,
∴∠FQB=90°,
∵DE⊥AC,
∴∠DEC=90°
∵FG⊥CD CD⊥BD,
∴BD∥FG,∠BDC=∠FGC=90°,
∴四边形DGFQ为矩形,
∴QF=DG,
∴∠B=∠GFC
∵F为BC中点
∴BF=FC,
∵在Rt△BQF与Rt△FGC中,
∠BQF=∠FGC
∠B=∠GFC
BF=FC
∴△BQF≌△FGC(AAS),
∴QF=GC,
∵QF=DG,
∴DG=GC,
在Rt△DEC中,
∵G为DC中点,
∴DG=EG.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;直角三角形斜边上的中线.
作FQ⊥BD于Q,在Rt△DEC中,若能够证明G为DC中点,则有DG=EG,因此此题转化为证明DG与GC相等的问题,易得QF=DG,然后利用△BQF≌△FGC证出QF=GC.
本题考查了全等三角形的判定与性质:判断三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应角相等,对应边相等.也考查了直角三角形斜边上的中线性质.
证明题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
(2013·台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?( )
(2012·湖州)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
(2009·辽阳)如图,在Rt△ABC中,∠BAC=90°,D、E分别为BC、AB的中点,且AC=6cm,AB=8cm.则△ADE的周长为( )
(2007·湘潭)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是( )