试题
题目:
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
A.20
B.12
C.14
D.13
答案
C
解:∵AB=AC,AD平分∠BAC,BC=8,
∴AD⊥BC,CD=BD=
1
2
BC=4,
∵点E为AC的中点,
∴DE=CE=
1
2
AC=5,
∴△CDE的周长=CD+DE+CE=4+5+5=14.
故选C.
考点梳理
考点
分析
点评
直角三角形斜边上的中线;等腰三角形的性质.
根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=
1
2
AC,然后根据三角形的周长公式列式计算即可得解.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.
找相似题
(2013·台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?( )
(2012·湖州)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
(2009·辽阳)如图,在Rt△ABC中,∠BAC=90°,D、E分别为BC、AB的中点,且AC=6cm,AB=8cm.则△ADE的周长为( )
(2007·湘潭)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是( )
(2007·台湾)如图,△ABC中,∠C=90°,D在CB上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE=( )