试题
题目:
如图,在△ABC中,∠C=90°,∠ABD=2∠EBC,AD∥BC,
求证:DE=2AB.
答案
证明:取ED的中点O,连接AO,
∵∠CAD=90°,
∴OD=AO=OE,
∴∠AOE=2∠D,
∵AD∥BC,
∴∠EBC=∠D,
∴∠AOE=2∠EBC,
∵∠ABD=2∠EBC,
∴∠ABD=∠AOB,
∴AB=OA,
∴DE=2AB=2OA.
证明:取ED的中点O,连接AO,
∵∠CAD=90°,
∴OD=AO=OE,
∴∠AOE=2∠D,
∵AD∥BC,
∴∠EBC=∠D,
∴∠AOE=2∠EBC,
∵∠ABD=2∠EBC,
∴∠ABD=∠AOB,
∴AB=OA,
∴DE=2AB=2OA.
考点梳理
考点
分析
点评
专题
直角三角形斜边上的中线;平行线的性质;等腰三角形的判定与性质.
取ED的中点O,连接AO,结合已知,可知∠EBC=∠D,OD=AO=OE,∠AOE=2∠D,即可推出∠ABD=∠AOB,所以DE=2AB=2OA.
本题主要考查平行线的性质、直角三角形斜边上的中线的性质、等腰三角形的判定和性质,解题的关键在于作出斜边DE上的中线,求证OA=AB即可.
证明题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
(2013·台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?( )
(2012·湖州)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
(2009·辽阳)如图,在Rt△ABC中,∠BAC=90°,D、E分别为BC、AB的中点,且AC=6cm,AB=8cm.则△ADE的周长为( )
(2007·湘潭)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是( )