试题

题目:
青果学院如图,在△ADC中,AD,BE分别为边BC,AC上的高,D,E为垂足,M为AB的中点,N为DE的中点,求证:
(1)△MDE是等腰三角形;
(2)MN⊥DE.
答案
证明:(1)如图,在△ABD中,AD⊥BD,则△ABD是直角三角形,AB是斜边.
∵M是AB的中点,
∴MD=
1
2
AB.
同理,ME=
1
2
AB,
∴ME=MD,
∴△MDE是等腰三角形;

(2)由(1)知,△MDE是等腰三角形.
∵N是ED的中点,
∴MN平分DE,
∴MN⊥DE.
证明:(1)如图,在△ABD中,AD⊥BD,则△ABD是直角三角形,AB是斜边.
∵M是AB的中点,
∴MD=
1
2
AB.
同理,ME=
1
2
AB,
∴ME=MD,
∴△MDE是等腰三角形;

(2)由(1)知,△MDE是等腰三角形.
∵N是ED的中点,
∴MN平分DE,
∴MN⊥DE.
考点梳理
等腰三角形的判定与性质;直角三角形斜边上的中线.
(1)由“直角三角形斜边上的中线等于斜边的一半”证得ME=MD=
1
2
AB;
(2)由等腰三角形的“三合一”的性质证得结论.
本题考查了等腰三角形的判定与性质,直角三角形斜边上的中线.在直角三角形中,斜边上的中线等于斜边的一半.
证明题.
找相似题