试题
题目:
在平行四边形ABCD的对角线相交于点O.E、F、P分别OB、OC、AD的中点,且AC=2AB,求证:EP=EF.
答案
证明:连接AE,
∵四边形ABCD是平行四边形,
∴AD=BC,AC=2OA=2OC,
∵AC=2AB,
∴OA=AB,
∵E为OB中点,
∴AE⊥BD(三线合一定理),
∴∠AED=90°,
∵P为AD中点,
∴AD=2EP,
∵BC=AD,
∴BC=2EP,
∵E、F分别是OB、OC中点,
∴BC=2EF,
∴EP=EF.
证明:连接AE,
∵四边形ABCD是平行四边形,
∴AD=BC,AC=2OA=2OC,
∵AC=2AB,
∴OA=AB,
∵E为OB中点,
∴AE⊥BD(三线合一定理),
∴∠AED=90°,
∵P为AD中点,
∴AD=2EP,
∵BC=AD,
∴BC=2EP,
∵E、F分别是OB、OC中点,
∴BC=2EF,
∴EP=EF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;三角形中位线定理.
连接AE,求出AB=AO,得出AE⊥BD,求出EP=
1
2
AD,求出EF=
1
2
BC,根据AD=BC求出即可.
本题考查了平行四边形性质,直角三角形斜边上中线性质,等腰三角形性质,三角形的中位线性质的应用,关键是求出EP=
1
2
AD,题目比较好,综合性比较强.
证明题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
(2013·台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?( )
(2012·湖州)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
(2009·辽阳)如图,在Rt△ABC中,∠BAC=90°,D、E分别为BC、AB的中点,且AC=6cm,AB=8cm.则△ADE的周长为( )
(2007·湘潭)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是( )