试题
题目:
如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,试说明:
(1)MD=MB;
(2)MN⊥BD.
答案
证明:(1)∵∠ABC=∠ADC=90°,M是AC的中点,
∴BM=
1
2
AC,DM=
1
2
AC,
∴DM=BM;
(2)由(1)可知DM=BM,
∵N是BD的中点,
∴MN⊥BD.
证明:(1)∵∠ABC=∠ADC=90°,M是AC的中点,
∴BM=
1
2
AC,DM=
1
2
AC,
∴DM=BM;
(2)由(1)可知DM=BM,
∵N是BD的中点,
∴MN⊥BD.
考点梳理
考点
分析
点评
专题
直角三角形斜边上的中线;等腰三角形的判定与性质.
(1)根据直角三角形斜边上的中线等于斜边的一半,以及等边对等角的性质即可证明;
(2)根据等腰三角形的三线合一证明.
此题主要是运用了直角三角形的性质以及等腰三角形的性质,题目难度不大.
证明题.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
(2013·台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?( )
(2012·湖州)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
(2009·辽阳)如图,在Rt△ABC中,∠BAC=90°,D、E分别为BC、AB的中点,且AC=6cm,AB=8cm.则△ADE的周长为( )
(2007·湘潭)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是( )