试题
题目:
如图,已知边长为2的正三角形ABC,两顶点A,B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC长的最大值是
3
+1
3
+1
.
答案
3
+1
解:如图,取AB的中点D,连接OD、CD,
∵正三角形ABC的边长为2,
∴OD=
1
2
×2=1,CD=
3
2
×2=
3
,
在△ODC中,OD+CD>OC,
∴当O、D、C三点共线时OC最长,最大值为
1
2
×2+
3
2
×2=
3
+1.
故答案为:
3
+1.
考点梳理
考点
分析
点评
专题
等边三角形的性质;三角形三边关系;直角三角形斜边上的中线.
取AB的中点D,连接OD、CD,根据直角三角形斜边上的中线等于斜边的一半求出OD的长度,再根据等边三角形的性质求出CD的长,然后根据三角形任意两边之和大于第三边可得OD+CD>OC,判定当O、D、C三点共线时OC最长,然后求解即可.
本题考查的是等边三角形的性质,三角形的三边关系,根据题意作出辅助线,判定出O、D、C三点共线时OC最长是解题的关键.
压轴题;探究型.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
(2013·台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?( )
(2012·湖州)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
(2009·辽阳)如图,在Rt△ABC中,∠BAC=90°,D、E分别为BC、AB的中点,且AC=6cm,AB=8cm.则△ADE的周长为( )
(2007·湘潭)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是( )