试题

题目:
青果学院已知,如图在△ABC中,∠ACB=90°,AC=8,BC=6,CD、CE分别是斜边AB上的中线和高.则下列结论错误的是(  )



答案
D
解:A、∵∠ACB=90°,青果学院
∴AB2=AC2+BC2=100,
即AB=10.
此结论正确,故此选项错误;
B、∵∠ACB=90°,CD是斜边上的中线,
∴CD=AD=BD=
1
2
AB=5.
此结论正确,故此选项错误;
C、∵S△ABC=
1
2
AC·BC=
1
2
AB·CE,
∴6×8=10CE,
解得CE=
24
5

此结论正确,故此选项错误;
D、在Rt△BCE中,BE2=BC2-CE2=36-
576
25
=
324
25

解得BE=
18
5
5
2

此结论错误,故此选项正确.
故选D.
考点梳理
勾股定理;直角三角形斜边上的中线.
A、直接利用勾股定理可求AB;
B、利用直角三角形斜边上的中线等于斜边的一半,可求CD;
C、利用三角形的面积公式,易求CE;
D、利用勾股定理可求BE,进而可判断是否正确.
本题考查了勾股定理、直角三角形斜边上的中线的性质,解题的关键是一定要在直角三角形内运用勾股定理.
计算题.
找相似题