试题
题目:
如图,平行四边形ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为( )
A.2
B.2
3
C.4
D.4
3
答案
B
解:∵四边形ABCD是平行四边形
∴AB∥CD,
∴∠DCF=60°,
又∵EF⊥BC,
∴∠CEF=30°,
∴CF=
1
2
CE,
又∵AE∥BD,
∴AB=CD=DE,
∴CF=CD,
又∵∠DCF=60°,
∴∠CDF=∠DFC=60°,
∴CD=CF=DF=DE=2,
∴EF=
CE
2
-
CF
2
=
4
2
-
2
2
=
12
=
2
3
.
故选B.
考点梳理
考点
分析
点评
勾股定理;直角三角形斜边上的中线;平行四边形的判定与性质.
由平行四边形的性质及直角三角形的性质,推出△CDF为等边三角形,再根据勾股定理解答即可.
本题考查平行四边形的性质的运用.解题关键是利用平行四边形的性质结合三角形性质来解决有关的计算和证明.
找相似题
(2013·枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
(2013·台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?( )
(2012·湖州)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
(2009·辽阳)如图,在Rt△ABC中,∠BAC=90°,D、E分别为BC、AB的中点,且AC=6cm,AB=8cm.则△ADE的周长为( )
(2007·湘潭)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,连DE、CE.则下列结论中不一定正确的是( )