试题
题目:
如图,四边形ABCD中,∠A=90°,AD∥BC,BE⊥CD于E交AD的延长线于F,DC=2AD,AB=BE.
(1)求证:AD=DE.
(2)求证:四边形BCFD是菱形.
答案
证明:(1)∵∠A=∠DEB=90°,
在Rt△BDA与Rt△BDE中,
AB=BE
BD=BD
,
∴△BDA≌△BDE,
∴AD=DE;
(2)∵AD=DE,DC=DE+EC=2AD,
∴DE=EC,
又∵AD∥BC,
∴△DEF≌△CEB,
∴DF=BC,
∴四边形BCFD为平行四边形,
又∵BE⊥CD,
∴四边形BCFD是菱形.
证明:(1)∵∠A=∠DEB=90°,
在Rt△BDA与Rt△BDE中,
AB=BE
BD=BD
,
∴△BDA≌△BDE,
∴AD=DE;
(2)∵AD=DE,DC=DE+EC=2AD,
∴DE=EC,
又∵AD∥BC,
∴△DEF≌△CEB,
∴DF=BC,
∴四边形BCFD为平行四边形,
又∵BE⊥CD,
∴四边形BCFD是菱形.
考点梳理
考点
分析
点评
专题
菱形的判定与性质;全等三角形的判定与性质.
(1)由
AB=BE
BD=BD
,利用“HL”可证△BDA≌△BDE,得出AD=DE;
(2)由AD=DE,DC=DE+EC=2AD,可得DE=EC,又AD∥BC,可证△DEF≌△CEB,得出四边形BCFD为平行四边形,再由BE⊥CD证明四边形BCFD是菱形.
本题考查了菱形的判定,全等三角形的判定与性质.关键是明确每个判定定理的条件,逐步推出特殊四边形.
证明题.
找相似题
(2011·莱芜)如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=
1
2
(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是( )
下列命题中,真命题是( )
如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是( )
下列说法中,错误的是( )
分别顺次连接①等腰梯形;②矩形;③菱形;④对角线相等的四边形“各边中点所构成的四边形”中,为菱形的是( )