菱形的判定与性质;等边三角形的性质;平移的性质.
由△ABC沿射线BC向右平移到△DCE,根据平移的性质:对应点的连线平行且相等得到AD与BC平行且相等,选项A正确,利用一组对边平行且相等的四边形为平行四边形得到ABCD为平行四边形,由三角形ABC为等边三角形可得出AB=BC,根据邻边相等的平行四边形为菱形可得出四边形ABCD为菱形,根据菱形的对角线互相垂直得到AC与BD垂直,再由平移的性质得到对应边平行,得到AC与DE平行,利用与平行线中的一条垂直,与另一条也垂直得到BD垂直于DE,选项B正确;同理可得出ACED为菱形,选项C正确;过A作AF垂直于BC,由三角形ABC为边长为2的等边三角形,根据三线合一得到BF为BC的一半,求出BF的长,在直角三角形ABF中,由AB及BF的长,利用勾股定理求出AF的长,然后利用底BC乘以高AF即可求出菱形ABCD的面积为2
,选项D错误,即可得出满足题意的选项.
此题考查了菱形的性质与判定,等边三角形的性质,以及平移的性质,灵活运用平移性质是解本题的关键.
计算题.