答案
(1)证明:∵DF∥BC,∠ACB=90°,
∴∠CFD=90°.
∵CD⊥AB,
∴∠AEC=90°.
在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,
∴Rt△AEC≌Rt△DFC.
∴CE=CF.
∴DE=AF.
而∠AGF=∠DGE,∠AFG=∠DEG=90°,
∴Rt△AFG≌Rt△DEG.

∴GF=GE;
(2)解:∵CD⊥AB,∠A=30°,
∴CE=
AC=
CD,
∴CE=ED.
∴BC=BD=1.
又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,
∴∠ECB=∠A=30°,∠CEB=90°,
∴BE=
BC=
BD=
,
在直角三角形ABC中,∠A=30°,
则AB=2BC=2.
则AE=AB-BE=
,
∵Rt△AEC≌Rt△DFC,
∴DF=AE=
.
(1)证明:∵DF∥BC,∠ACB=90°,
∴∠CFD=90°.
∵CD⊥AB,
∴∠AEC=90°.
在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,
∴Rt△AEC≌Rt△DFC.
∴CE=CF.
∴DE=AF.
而∠AGF=∠DGE,∠AFG=∠DEG=90°,
∴Rt△AFG≌Rt△DEG.

∴GF=GE;
(2)解:∵CD⊥AB,∠A=30°,
∴CE=
AC=
CD,
∴CE=ED.
∴BC=BD=1.
又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,
∴∠ECB=∠A=30°,∠CEB=90°,
∴BE=
BC=
BD=
,
在直角三角形ABC中,∠A=30°,
则AB=2BC=2.
则AE=AB-BE=
,
∵Rt△AEC≌Rt△DFC,
∴DF=AE=
.