试题
题目:
如图,过边长为2的等边△ABC的边AB上点P作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE长为
1
1
.
答案
1
解:过P做BC的平行线至AC于F,
∴∠Q=∠FPD,
∵等边△ABC,
∴∠APF=∠B=60°,∠AFP=∠ACB=60°,
∴△APF是等边三角形,∴AP=PF,AP=CQ,
∵AP=CQ,
∴PF=CQ,
∵在△PFD和△QCD中,
∠FPD=∠Q
∠PDF=∠QDC
PF=CQ
,
∴△PFD≌△QCD(AAS),
∴FD=CD,∵PE⊥AC于E,△APF是等边三角形,∴AE=EF,
∴AE+DC=EF+FD,
∴ED=
1
2
AC,∵AC=2,
∴DE=1.
故答案为1.
考点梳理
考点
分析
点评
专题
等边三角形的性质;全等三角形的判定与性质.
过P做BC的平行线至AC于F,通过求证△PFD和△QCD全等,推出FD=CD,再通过证明△APF是等边三角形和PE⊥AC,推出AE=EF,即可推出AE+DC=EF+FD,可得ED=
1
2
AC,即可推出ED的长度.
本题主要考查等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.
压轴题.
找相似题
如图,△ABC是边长为6cm的等边三角形,BD是中线,延长BC至E点,使CE=CD.
求:(1)CE的长;(2)∠E的度数.
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O.
(1)设AD与BC交于点P,BE与CD交于点Q,连接PQ、以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有
①②③⑤
①②③⑤
(把你认为正确的序号都填上)
(2)在你认为恒成立的结论中选一个加以证明.
如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.
如图,点M,N分别是等边△ABC边AB,CA的延长线上的点,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
求证:NC=BM+MN.
如图,△ABC是等边三角形,D为AB边上的一个动点,DE∥BC,延长BC到F,使CF=AD,连接DF交AC于P.
(1)求证:EP=CP;
(2)若△ABC的边长为a,CF长为b,且a、b满足
(a-5
)
2
+
b-3
=0
,求CP长;
(3)若△ABC的边长为5,设CF=x,CP=y,求y与x间的函数关系式,并写出自变量x的取值范围.