试题

题目:
青果学院△ABC是一个等边三角形,点D,E分别在AB,AC上,且AD=CE,BE和CD相交于P,求∠BPD的度数.
答案
青果学院解:∵△ABC是等边三角形,
∴AC=BC,∠A=∠ACB=60°,
又知AD=CE,
AC=BC
∠A=∠ACB=60°
AD=EC

∴△ACD≌△BCE(SAS),
∴∠ACD=∠CBE,
∴∠ABE=∠DCB,
∵∠ABE+∠EBC=60°,
∴∠BPD=∠EBC+∠DCB=∠ABC=60°.
青果学院解:∵△ABC是等边三角形,
∴AC=BC,∠A=∠ACB=60°,
又知AD=CE,
AC=BC
∠A=∠ACB=60°
AD=EC

∴△ACD≌△BCE(SAS),
∴∠ACD=∠CBE,
∴∠ABE=∠DCB,
∵∠ABE+∠EBC=60°,
∴∠BPD=∠EBC+∠DCB=∠ABC=60°.
考点梳理
等边三角形的性质;全等三角形的判定与性质.
根据题干条件:AC=BC,∠A=∠ACB=60°,AD=CE,可以判定△ACD≌△BCE,即可得到∠ACD=∠CBE,又知∠BPD=∠EBC+∠DCB求出即可.
本题主要考查等边三角形的性质和全等三角形的判定与性质的知识点,解答本题的关键是能看出∠ACD=∠CBE,还要熟练掌握三角形全等的判定与性质定理.
找相似题