试题
题目:
如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AE=2EB,EF=ED,∠FED=60°.
(1)△BFE与△AED全等吗?请说明理由;
(2)FE⊥AB吗?请说明理由.
答案
解:(1)△BFE≌△AED.
理由:∵∠B=∠FED=60°,
∴∠BFE+∠FEB=∠FEB+∠AED,
∴∠BFE=∠AED.
又∵∠B=∠A,EF=ED,
∴△BFE≌△AED(AAS).
(2)FE⊥AB.
理由是:取BF的中点G,连接EG,则BF=2BG.
由(1)知,AE=BF,∴AE=2BG.
又AE=2EB,∴BE=BG.
∵∠B=60°,∴△EBG是等边三角形.
∴GE=GB=GF,
∴∠B=∠GEB,∠GEF=∠GFE.
由三角形内角和定理,知
2∠GEB+2∠GEF=180°,
即∠BEF=90°,FE⊥AB.
解:(1)△BFE≌△AED.
理由:∵∠B=∠FED=60°,
∴∠BFE+∠FEB=∠FEB+∠AED,
∴∠BFE=∠AED.
又∵∠B=∠A,EF=ED,
∴△BFE≌△AED(AAS).
(2)FE⊥AB.
理由是:取BF的中点G,连接EG,则BF=2BG.
由(1)知,AE=BF,∴AE=2BG.
又AE=2EB,∴BE=BG.
∵∠B=60°,∴△EBG是等边三角形.
∴GE=GB=GF,
∴∠B=∠GEB,∠GEF=∠GFE.
由三角形内角和定理,知
2∠GEB+2∠GEF=180°,
即∠BEF=90°,FE⊥AB.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;三角形内角和定理;等边三角形的性质.
(1)由∠B=∠FED=60°推出∠BFE=∠AED,再由∠B=∠A,EF=ED即可得到答案;
(2)取BF的中点G,连接EG,得出△EBG是等边三角形,推出EG=BG=GF,根据等边对等角和三角形的内角和定理即可∠BEF=90°,即可得出答案.
本题主要考查了全等三角形的性质和判定,等边三角形的性质和判定,三角形的内角和定理等知识点,作辅助线证角之间的关系是解此题的关键.题型较好,综合性强.
证明题.
找相似题
如图,△ABC是边长为6cm的等边三角形,BD是中线,延长BC至E点,使CE=CD.
求:(1)CE的长;(2)∠E的度数.
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O.
(1)设AD与BC交于点P,BE与CD交于点Q,连接PQ、以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有
①②③⑤
①②③⑤
(把你认为正确的序号都填上)
(2)在你认为恒成立的结论中选一个加以证明.
如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.
如图,点M,N分别是等边△ABC边AB,CA的延长线上的点,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
求证:NC=BM+MN.
如图,△ABC是等边三角形,D为AB边上的一个动点,DE∥BC,延长BC到F,使CF=AD,连接DF交AC于P.
(1)求证:EP=CP;
(2)若△ABC的边长为a,CF长为b,且a、b满足
(a-5
)
2
+
b-3
=0
,求CP长;
(3)若△ABC的边长为5,设CF=x,CP=y,求y与x间的函数关系式,并写出自变量x的取值范围.