试题
题目:
如图是一个等边三角形,你能将它分成两个全等的三角形吗?能分成三个、四个、五个、六个全等的三角形吗?如果能,请你画出图形.
答案
解:如图所示;能分成两个、三个、四个、六个全等的三角形.
解:如图所示;能分成两个、三个、四个、六个全等的三角形.
考点梳理
考点
分析
点评
等边三角形的性质.
根据等边三角形三线合一的性质即可得出结论.
本题考查的是等边三角形的性质,解决本题的关键是理解把三角形分为三个全等的图形不只是分为3个三角形;难点是利用类比的方法得到只要过等边三角形的中心,把中心所在位置的周角三等分的直线可把等边三角形分为三个全等的图形.
找相似题
如图,△ABC是边长为6cm的等边三角形,BD是中线,延长BC至E点,使CE=CD.
求:(1)CE的长;(2)∠E的度数.
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O.
(1)设AD与BC交于点P,BE与CD交于点Q,连接PQ、以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有
①②③⑤
①②③⑤
(把你认为正确的序号都填上)
(2)在你认为恒成立的结论中选一个加以证明.
如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.
如图,点M,N分别是等边△ABC边AB,CA的延长线上的点,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
求证:NC=BM+MN.
如图,△ABC是等边三角形,D为AB边上的一个动点,DE∥BC,延长BC到F,使CF=AD,连接DF交AC于P.
(1)求证:EP=CP;
(2)若△ABC的边长为a,CF长为b,且a、b满足
(a-5
)
2
+
b-3
=0
,求CP长;
(3)若△ABC的边长为5,设CF=x,CP=y,求y与x间的函数关系式,并写出自变量x的取值范围.